1. Al-Quraishi, A. M. F., Qader, S. H., and Wu, W. (2020). Drought monitoring using spectral and meteorological based indices combination: a case study in Sulaimaniyah, Kurdistan region of Iraq. In Environmental Remote Sensing and GIS in Iraq (pp. 377–393). Springer.
2. Aroca, R., del Mar Alguacil, M., Vernieri, P., and Ruiz-Lozano, J. M. (2008). Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrhization in tomato and an ABA-deficient mutant (sitiens). Microbial Ecology, 56(4): 704–719.
3. Augé, R. M. (2004). Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science, 84(4): 373–381.
4. Bhattacharya, A. (2018). Changing Climate and Resource Use Efficiency in Plants. Academic Press.
5. Bowles, T. M., Barrios-Masias, F. H., Carlisle, E. A., Cavagnaro, T. R., and Jackson, L. E. (2016). Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Science of the Total Environment, 566: 1223–1234.
6. Delgado, J. A., Floyd, B., Brandt, A. D., and D’Adamo, R. (2021). Use of Narrow Rows in Sprinkler-Irrigated Corn Systems to Increase Grain Yields, Aboveground Biomass, and Water and Nitrogen Use Efficiencies. Agronomy, 12(1): 82.
7. Eulenstein, F., Tauschke, M., Behrendt, A., Monk, J., Schindler, U., Lana, M. A., and Monk, S. (2017). The application of mycorrhizal fungi and organic fertilisers in horticultural potting soils to improve water use efficiency of crops. Horticulturae, 3(1). https://doi.org/10.3390/horticulturae3010008.
8. FAO. (2022). FAO Cereal Supply and Demand Brief | World Food Situation | Food and Agriculture Organization of the United Nations. 2022. https://www.fao.org/worldfoodsituation/csdb/en/.
9. Grote, U., Fasse, A., Nguyen, T. T., and Erenstein, O. (2021). Food security and the dynamics of wheat and maize value chains in Africa and Asia. Frontiers in Sustainable Food Systems 4. www.frontiersin.org/article/10.3389/fsufs.2020.617009.
10. Guru, V., Tholkappian, P., and Viswanathan, K. (2011). Influence of arbuscular mycorrhizal fungi and Azospirillum co-inoculation on the growth characteristics, nutritional content, and yield of tomato crops grown in south India. Indian Journal of Fundamental and Applied Life Sciences, 1(4): 84–92.
11. Huang, G. M., Zou, Y. N., Wu, Q. S., Xu, Y. J., and Kuča, K. (2020). Mycorrhizal roles in plant growth, gas exchange, root morphology, and nutrient uptake of walnuts. Plant, Soil and Environment, 66(6): 295–302. https://doi.org/10.17221/240/2020-PSE.
12. Khidher, A. K., and Mohammad, A. O. (2010). Selection of Effective mycorrhizal Inoculums for soybean (Glycine max L.) plants. Journal of Kerbala University, The 1 St Scientific Conference the Collage of Agriculture 2010, 85–90.
13. Lazcano, C., Barrios-Masias, F. H., and Jackson, L. E. (2014). Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes. Soil Biology and Biochemistry, 74: 184–192.
14. Mohammad, A. O., Mohammed, D. J., Abid, S. A., and Karim, S. H. (2020). Influence of Animal Manures on Carbon Mineralisation and Nutrient Availability in Calcareous Soil. Journal of Zankoy Sulaimani ., Part A 22: 55–62. https://doi.org/10.17656/jzs.10807.
15. Mohammed, D. J. (2011). Effect of Mycorrhizal Fungi And Phosphorus on Growth and Yield of Corn In Calcareous Soil. M.Sc. Thesis,Soil and Water Science Department, Faculty of Agricultural Science, Sulaimani University.
16. Mohammed, F. O., Mohammad, A. O., Ibrahim, H. S., and Hasan, R. A. (2021). Future Scenario of Global Climate Map change according to the Köppen-Geiger Climate Classification. Baghdad Science Journal, 18(2).
https://doi.org/10.21123/bsj.2021.18.2(Suppl.).1030.
17. Naghashzadeh, M. (2014). Response of relative water content and cell membrane stability to mycorrhizal biofertilizer in maize. Electronic Journal of Biology, 10(3): 68–72.
18. Omirou, M., Ioannides, I. M., and Ehaliotis, C. (2013). Mycorrhizal inoculation affects arbuscular mycorrhizal diversity in watermelon roots, but leads to improved colonization and plant response under water stress only. Applied Soil Ecology, 63: 112–119.
19. Page, A. L., Miller, R. H., and Keeney, D. R. (1982). Methods of soil analysis part 2: chemical and microbiological properties second edition. Agronomy 920 Am. Soc. Agron. Inc. Soil Sci. Soc. Am. Inc. Pub. Madison, Wisconsin, USA.
20. Phillips, J. M., and Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1): 158–161.
21. Pirzad, A., and Mohammadzadeh, S. (2018). Water use efficiency of three mycorrhizal Lamiaceae species (Lavandula officinalis, Rosmarinus officinalis and Thymus vulgaris). Agricultural Water Management, 204: 1–10.
22. Posta, K., and Duc, N. H. (2020). Benefits of arbuscular mycorrhizal fungi application to crop production under water scarcity. Drought-Detection and Solutions, 25–37.
23. Rasul, G. A. M. (2016). Effect of phosphorus fertilizer application on some yield components of wheat and phosphorus use efficiency in calcareous soil. Journal of Dynamics in Agricultural Research, 3(4): 46–51.
24. Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M., De Pascale, S., Bonini, P., and Colla, G. (2015). Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae, 196: 91–108.
25. Smith, S. E., Jakobsen, I., Grønlund, M., and Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology, 156(3): 1050–1057.
26. Smith, S. E., and Read, D. J. (2010). Mycorrhizal symbiosis. Academic press.
27. Tandon, H. L. S. (2005). Methods of analysis of soils, plants, waters, fertilisers and organic manures. Fertiliser Development and Consultation Organisation.
28. Thirkell, T. J., Charters, M. D., Elliott, A. J., Sait, S. M., and Field, K. J. (2017). Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. Journal of Ecology, 105(4): 921–929.
29. Vafadar, F., Amooaghaie, R., and Otroshy, M. (2014). Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. Journal of Plant Interactions, 9(1): 128–136.
30. Wang, L., Zhang, W., Guo, G., Qian, K., and Huang, X. (2009).Selection experiments for the optimum combination of AMF-plant-substrate for the restoration of coal mines. Mining Science and Technology, 19(4): 479-482.
31. Wu, Q.-S., and Xia, R.-X. (2006). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 163(4): 417–425.
32. Xiao, T.-J., Yang, Q.-S., Wei, R. A. N., Xu, G.-H., and Shen, Q.-R. (2010). Effect of inoculation with arbuscular mycorrhizal fungus on nitrogen and phosphorus utilization in upland rice-mungbean intercropping system. Agricultural Sciences in China, 9(4): 528–535.
33. Zhang, G.-Y., Zhang, L.-P., Wei, M.-F., Liu, Z., Fan, Q.-L., Shen, Q.-R., and Xu, G.-H. (2011). Effect of arbuscular mycorrhizal fungi, organic fertilizer and soil sterilization on maize growth. Acta Ecologica Sinica, 31(4): 192–196.
34. Zhu, X. C., Song, F. B., Liu, S. Q., Liu, T. D., and Zhou, X. (2012). Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant, Soil and Environment, 58(4): 186–191.